Teenage births to ethnic minority women

This article analyses British age-specific fertility rates by ethnic group, with a special interest in child-bearing by women below the age of 20. Birth statistics are not analysed by ethnic group, and teenage birth rates have been estimated from the dates of birth of mothers and children in the Labour Force Survey. The method appears to be robust. Caribbean, Pakistani and especially Bangladeshi women were much more likely to have been teenage mothers than white women, but Indian women were below the national average. Teenage birth rates have been falling in all three South Asian communities.

AIMS

There is a growing body of evidence about diversity in patterns of family formation among Britain’s ethnic minorities. Although birth and marriage registration statistics do not record the ethnic group of parents or partners, the Labour Force Survey, the Census and the Fourth National Survey of Ethnic Minorities all provide data about the current structures of families. As in many other fields of investigation, the variations are not between the white population on the one hand and all minorities on the other, so much as between minority groups. If the overall trend in Britain is from ‘old fashioned family values’ towards ‘modern individualism’, it can be argued that of the principal minority groups, South Asians, and especially Pakistanis and Bangladeshis, are behind the trend, with very high rates of marriage and of fertility, while Caribbeans are ahead of the trend, with high and rising rates of single parenthood.

It was already clear from analysis of number of children by age of mother that there are considerable ethnic variations in fertility. In particular, Pakistani and Bangladeshi women report dependent children both earlier and later in their age-cycles, and have, on average, far more children than is currently the norm among white, Indian or black women. The objective of the current analysis is to analyse age-specific fertility rates by ethnic group, to plot the pattern more precisely. A special interest is in child-bearing by women below the age of 20, which (in western culture), is often associated with social disadvantage and poor health among both the mother and the child.

ONS’s national birth statistics are not analysed by ethnic group, and an alternative method of estimating the rate of teenage births has had to be used. The Labour Force Survey provides very large samples of members of the general population, including ethnic minorities. It is possible to work out, from the dates of birth of the women, and the...
dates of birth of the children living with them, how old the women would have been when their children were born. The first section of this article explains how this calculation was done; the second section provides the results.6

Method of analysis

The data for the analysis have been drawn from the official Labour Force Survey (LFS). The LFS selects a very large sample of addresses each year, and members of each household living in those addresses are interviewed. The analysis here is derived from information about the family relationships of the individuals identified.

Although the survey currently covers as many as 60,000 households annually, one year is still not large enough to provide samples of members of ethnic minorities adequate for the kind of detailed analysis required here. Thirteen consecutive years, 1987 to 1999 inclusive, have therefore been added together into a single data base, yielding the sample sizes shown in Table 1. All women aged 16 to 59 from ethnic minorities were included in the data. A random sample of one-tenth of the white women in that age range were selected; but weighted by ten in the analysis to restore the correct balance.

Since 1992, the Quarterly Labour Force Survey has interviewed the same sample five consecutive quarters. We have analysed the Spring quarter of each year, and excluded the fifth of the sample who had been interviewed between the children born to a woman, and the children living with her when interviewed at some later date. The number of her children might appear to increase, to the extent that her natural children who had died, were adopted, or went to live with other people (such as their father). The number of her children might appear to increase, to the extent that her natural children had died, were adopted, or went to live with other people (such as their father). The number of her children might appear to increase, to the extent that her natural children had died, were adopted, or went to live with other people (such as their father). The number of her children might appear to increase, to the extent that her natural children had died, were adopted, or went to live with other people (such as their father).

The basic analytical approach has been to work out how old the mother must have been when each of her children was born, making use of the date of birth of each woman and each child in the LFS sample. Data based on resident children is not quite precise as a measure of fertility rates, because there will not be an exact match between the children born to a woman, and the children living with her when interviewed at some later date. The number of her children might appear to reduce, to the extent that her natural children had died, were adopted, or went to live with other people (such as their father). The number of her children might appear to increase, to the extent that her natural children had died, were adopted, or went to live with other people (such as their father). The number of her children might appear to increase, to the extent that her natural children had died, were adopted, or went to live with other people (such as their father).

The method will be accurate only on the assumption that the great majority of children survive, and live with their natural mother. Murphy and Berrington have adopted this analytical approach with earlier LFSs and they conclude that this assumption is true for the vast majority of children up to the age of 18. To be on the safe side, this analysis has been confined to those up to age 15.

Another test of the ‘living together’ assumption can be based on the length of time between the birth and the time of interview. If there was a strong tendency for children not to live with their natural mother, this might show up more and more as time went on over the 15 years on which the calculations are based. But the analysis showed that there was no consistent tendency for estimated teenage birth rates to fall with the current age of the woman, which is what would have occurred if there had been a steady movement of children away from their mother’s home.

The children in the LFS sample have been matched with their mothers using three slightly different formulae, because the coding of family relationships changed from year to year:

- up to 1990, the codes identified the ‘family unit’, and the relationship of each household member to the head of the household;
- between 1991 and 1996, the codes identified the ‘family unit’, and the relationship of each family member to the head of the family;
- from 1997 on, the relationship of each member of the household was coded in relation to each other member.

Each of these formulae succeeded in linking about 97 per cent of children (under 16) with their mother. (The remaining 3 per cent are presumed to have been living with their father, or with neither parent.) There were no substantial discontinuities in the pattern of fertility rates at the boundaries between the three sequences of years, and the method appears to have been robust.

On the assumption that mothers and children are correctly matched, comparison of the dates of birth of each provides an exact measure of the age of the mother when the child was born, and fertility rates can then be calculated. That is the method used here.

Some initial estimates (not shown in this paper) were based on a comparison of the mother’s and the child’s ages at the time of the LFS interview:

\[
\text{age of mother at birth} = \text{age of mother now} - \text{age of child now}
\]

This would be exactly accurate only for children who were born on their mother’s birthday. If ‘age’ means ‘age last birthday’, then the formula just quoted would make the mother appear to have been one year older at the birth of her child, than she really was, during that period of the year after her own birthday and before her child’s. That error would occur, on average, for half of the sample of women. By making the mother seem older than she really was, the effect would be to reduce measured fertility rates early in the life cycle and to increase it later in the cycle. This latter method could, however, be applied to other data sources which recorded ages but not dates of birth, so long as the bias was taken into account in making comparisons.

In detail, women were ignored if their current age was the same as the age-year for which a fertility estimate was being calculated, because they had not yet completed their 12 months at risk. Women more than 15 years older than the age-year under consideration were also ignored; beyond 15, we assume that there is a high risk of any children leaving home. Thus the women contributing to each age-specific estimate were between 1 and 15 years older than that age. As a result, the women contributing to the early birth rates were not the same women as were analysed for the later birth rates.

Many of the women in ethnic minority groups had migrated from their country of origin, either as children or as adults. Members of the sample were included in the analysis for each specific age only if they had come to Britain before that age. Thus the estimates are of British birth rates, not of the fertility experience of women now living in this
country. (In fact, women who had migrated to this country after a given age had lower fertility rates at that age than those who already lived here. This should not be interpreted as an indication of fertility rates in their country of origin; it seems likely that women who already had children may have had a lower-than-average chance of migrating to Britain.)

While a disadvantage of using this extended sequence of surveys (1987–1999) is that the estimates are not up to date, a converse advantage is that we can observe trends over time. Take as an example a 25 year old woman with a 5 year old child. The child would have been born in 1994 if she had been interviewed in 1999, but in 1982 if she had been a member of the 1987 sample. More generally, the most recent event measured would have occurred in 1998 (1 year old child, interview in 1999); the earliest event would have occurred in 1972 (15 year old child, 1987 sample). But only one year’s survey, and one age of child, were capable of recording events right at the beginning or end of this sequence, and most of the action took place in the middle of the period. The teenage birth rates, for example, were based on the distribution of dates shown in Figure 1. The peak years for observations were in the mid 1980s.

Figure 2 compares the LFS-based estimates for teenage fertility, derived as just described, with the age-specific fertility rates published by the Office for National Statistics over the period. The two sets of figures are very (one might even say astonishingly) similar to each other, and it may be concluded that the LFS has provided reasonably accurate estimates on which to base the analysis by ethnic group.

RESULTS

The analysis has covered fertility across all age ranges between 15 and 44, and we start by presenting teenage births in the context of women’s overall pattern of fertility. Table 2 shows the average estimated rate of births (per thousand women) in five year ranges. Figure 3 shows the same data (omitting the ‘other’ ethnic group for the sake of clarity).

Over the complete cycle, the estimates imply an average of 1.8 children per white woman before the age of 45. This was very similar for Caribbean women (1.8) and slightly higher for Indian women (2.3).
But the outstanding differences related to Pakistani women (4.0 children before 45) and Bangladeshi women (4.7).

In every ethnic group, the same characteristic pattern is shown, with births low in the teens, rising to a peak in the twenties, and falling again through the thirties. Pakistani and Bangladeshi women showed much higher rates of childbirth, especially from the early twenties onwards. The other ethnic groups were much more similar to each other, although Indian women had more children than white or black women during their 20s.

The overall analysis in Table 2 and Figure 3 shows that births to teenagers were much less common than at older ages, in all ethnic groups. The higher fertility rate of Bangladesis was already outstanding by this stage (75 per 1,000) - nearly three times the rate observed among white women. But Bangladeshis' birth rate as teenagers was still much lower than it became in their twenties and thirties. Pakistani teenagers (41 per 1,000) and Caribbeans (44 per 1,000) were substantially more likely to have children than young white women (29 per 1000). Teenage births among Indian women were substantially less common than among whites (17 per 1,000). The width of the gap between Indian and Bangladeshi women illustrates the importance of distinguishing between specific ethnic minority groups, rather than treating all Asians as a single category.

The method was necessary because registration data cannot be analysed of about 4 per 1,000 between 1976 and 1990, on average seven years after their babies were born. Among women who had become mothers below the age of 20.

47 per cent of whites were coded as married at the time of their interview;

15 per cent of Caribbeans were married;

85 per cent of South Asians (Indians, Pakistanis and Bangladeshis) were married.

These findings are consistent with other analyses of family formation in suggesting that the high rates of early fertility among the South Asians probably occurred within marriage, but that the relatively high rates for Caribbeans may have been outside marriage.

It has already been shown that many of the births being analysed would have occurred during the 1980s. So it is important to check whether the ethnic differences seen here would still be true in the late 1990s. This has been done by dividing women into three seven-year groups according to the dates at which they themselves were teenagers (Table 3). For whites, the rate of teenage childbirth increased very slightly between the beginning and end of the period of observation: an increase of about 4 per 1,000 between 1976–82 and 1990–96. For Caribbean women, there appears to have been a decline followed by a rise. For both these groups, though, the pattern of teenage motherhood seems essentially stable. Among the three South Asian communities, though, there are clear signs of a fall in early fertility. Indian women, already below average in 1976–82, had reduced their rate to only 7 per thousand in the 1990s. Pakistani women – much higher than the white average twenty years ago – showed a consistent fall over the period, and were very similar to whites in recent years. For Bangladeshi women, there were too few cases in the early period for a reliable estimate, but there are signs of a strong fall between the mid/late 1980s and the early/mid 1990s.

CONCLUSIONS – AND SOME COMMENTS

Retrospective calculations from the Labour Force Survey are based on the assumption that almost all children born to a woman still live with their mother up to the age of 15. This method provides estimates of teenage fertility so close to the birth registration statistics that they can be interpreted with some confidence.

The method was necessary because registration data cannot be analysed by ethnic group. The analysis confirmed that Pakistani and Bangladeshi women living in Britain have had life-time fertility rates more than twice as high as those recorded by white and Caribbean women; but Indian women had only slightly more children than the national average.
The primary focus of the analysis has been on births to teenagers. About 29 babies were born to white women below the age of 20 each year, out of every 1,000 of those in the relevant age range. The rate was substantially higher for women of Pakistani or Caribbean origin (41 and 44 per 1,000). It was much higher again for Bangladeshi women, at 75 per 1,000. On the other hand Indian teenagers were less likely to have babies than their white counterparts.

There are strong indications that teenage births occur in different circumstances, depending on the mother’s ethnic group.

- It is worth pointing out that this measure of teenage births does not cover all pregnancies. Getting on for half of all teenagers who get pregnant opt for an abortion, but it seems unlikely that many of these are of Asian origin. Young Pakistani and Bangladeshi women probably come closer to the white average if we were able to base the analysis on all conceptions.
- Most white girls are unmarried when they have their babies; but many of them probably marry later. Most of the Caribbean teenage mothers are unmarried, and most of them probably remain as single parents. The evidence suggests (though it does not prove) that most of the Asian women are married when they have their babies.

These points may mean that Caribbean, Pakistani and Bangladeshi teenagers are behaving broadly within the expectations of their various cultural groups if they have children; whereas white teenagers are contradicting current normative expectations.

An important conclusion is that white and Caribbean teenage birth rates appear stable, while Asian rates are falling:

- Indian teenagers have fallen from below-average to very low indeed;
- Pakistani teenagers have fallen from above-average to about average;
- Bangladeshi teenagers have fallen from more than three times the white rate in the mid/late 1980s, to less than twice the white rate in the early/mid 1990s.

These figures are based on relatively small samples, but the indications are that the very high overall rates of teenage motherhood observed in the two Muslim communities over the whole period may already be out of date.

The analysis has not attempted to measure the outcomes of teenage motherhood, in terms of later family size, economic disadvantage or other characteristics. Cohort surveys such as the NCDS provide much the best framework for analysing the causes and consequences of early childbearing. On the other hand, the reliability of the approach developed here may now encourage its application to the analysis of the current circumstances of young families, using the LFS itself, or other large-sample data sets such as the General Household Survey, the Family Resources Survey or the European Community Household Panel. Where other sources have not recorded exact dates of birth, comparison of mothers’ and children’s current ages would provide an adequate substitute.

Two questions of interpretation may be raised for discussion. The first is whether the high rates of teenage motherhood among Pakistani, Bangladeshi and Caribbean women should be a cause of policy concern, in the same way as the high rates observed nationally (in Britain compared with other countries) or among disadvantaged white women. If early motherhood carries direct physiological consequences for the health of mother or baby, then the disadvantage will affect young families in all ethnic groups. To the extent that early motherhood is associated with later disadvantage in the context of British society as a whole, then, again, the problems may be as great for minority families as for white families. But to the extent that the social problems observed among white teenage mothers are associated with their departure from the best advice of their mothers and grandmothers, it may be asked whether Caribbean or Muslim teenagers who are following the customs and practices of their own heritage are likely to experience the same kinds of problem.

The other question concerns the place of minority groups in the debate about the morality of family formation which is currently raging in political and journalistic circles. A demographic journal is not the place for a full discussion of the issues raised here, but it may be important to stress the very wide differences observed between Indian teenagers on the one hand, and Pakistanis and Bangladeshis on the other. There has been a tendency for the proponents of formal marriage to sanctify ‘Asians’ as the upholders of ‘old-fashioned values’, and to draw conclusions about the benefits which ‘Asian’ families derive from marriage. In fact it is Indian women who seem to derive the benefits in terms of well-ordered fertility, and satisfactory family incomes. It might be argued that Pakistani and Bangladeshi women benefit little from ‘old fashioned’ values: early motherhood can be seen as part of a pattern of family life characterised by a large number of children, exclusion from the labour market and high rates of child poverty.

Acknowledgements

The data on which this paper is based was supplied by the ESRC Data Archive at the University of Essex. The analysis was initially commissioned by the then Health Education Authority. The estimates have been completed recalculated and the paper revised under the auspices of the ESRC-sponsored core programme of the Institute for Social and Economic Research. Thanks to David Pearce, editor of Population Trends, for some important comments on the first draft.

Key Points:

- A method of estimating age-specific fertility rates from cross-sectional surveys of households has proved reliable.
- About 30 white teenagers have a baby, out of every 1,000 at risk.
- Teenage motherhood is more common among Caribbean, Pakistani and, especially, Bangladeshi women than among white women.
- But young Indian women are less likely than whites to have a baby before they are 20.
- Many white and most Caribbean teenage mothers are unmarried; but the majority of births to teenagers of South Asian origin are within marriage.
- The rates of teenage births among white and Caribbean women are stable, but there has been a marked decline in early parenthood in South Asian communities in Britain.

References

6. The analysis for this paper was originally based on a comparison of mothers’ and children’s ages. Some figures were quoted in the Social Exclusion Unit report referred to in note 5, and also in my paper on *Family Formation* referred to in note 4. The estimates have been recalculated for the current paper, using dates of birth as the basis for estimation. The figures here therefore supercede the other references.

8. As published in *Population Trends*. The LFS figures are for GB, the ONS ones for England and Wales.

9. This is calculated as the sum of the figures in the row, multiplied by five to take account of the five-year age-ranges.

10. LFS marital-status codes changed several times over the period, depending on whether women were *legally married*, and whether they were currently *living with a partner*. It is likely that the definition of ‘married’ used here is not fully consistent from year to year.

11. See note 5.

13. We are working with UNICEF on a comparison of the outcomes of teenage motherhood across Europe. It is hoped that a paper will be published during 2001. Watch www.iser.essex.ac.uk for details.

14. See note 5.

15. For example, *Daily Mail*, 19 December 2000. See also note 4.